Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves.

نویسندگان

  • Pierre Joliot
  • Daniel Béal
  • Anne Joliot
چکیده

The rate of cyclic electron flow measured in dark-adapted leaves under aerobic conditions submitted to a saturating illumination has been performed by the analysis of the transmembrane potential changes induced by a light to dark transfer. Using a new highly sensitive spectrophotometric technique, a rate of the cyclic flow of approximately 130 s(-1) has been measured in the presence or absence of 3-(3,4-dichloro-phenyl)-1,1-dimethylurea (DCMU). This value is approximately 1.5 times larger than that previously reported [Proc. Natl. Acad. Sci. U. S. A. 99 (2001) 10209]. We have characterized in the presence or absence of DCMU charge recombination process (t(1/2) approximately 60 micros) that involves P(700)(+) and very likely the reduced form of the iron sulfur acceptor F(X). This led to conclude that, under saturating illumination, the PSI centers involved in the cyclic pathway have most of the iron sulfur acceptors F(A) and F(B) reduced. In the proposed mechanism, electrons are transferred from a ferredoxin bound to a site localized on the stromal side of the cytochrome b(6)f complex to the Q(i) site. Two possible models of the organization of the membrane complexes are discussed, in which the cyclic and linear electron transfer chains are isolated one from the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic electron transfer in plant leaf.

The turnover of linear and cyclic electron flows has been determined in fragments of dark-adapted spinach leaf by measuring the kinetics of fluorescence yield and of the transmembrane electrical potential changes under saturating illumination. When Photosystem (PS) II is inhibited, a cyclic electron flow around PSI operates transiently at a rate close to the maximum turnover of photosynthesis. ...

متن کامل

Quantification of cyclic and linear flows in plants.

A method was developed to quantify the fraction of photosystem I (PSI) centers that operate according to the cyclic or linear mode, respectively. P(700) and plastocyanin oxidation were analyzed under a weak far-red excitation (approximately eight photons per s(-1) per PSI) that induces P(700) oxidation in approximately 20 s and approximately 3 s in dark-adapted and preilluminated leaves, respec...

متن کامل

Cyclic electron flow in C3 plants.

This paper summarized our present view on the mechanism of cyclic electron flow in C3 plants. We propose that cyclic and linear pathways are in competition for the reoxidation of the soluble primary PSI acceptor, Ferredoxin (Fd), that freely diffuses in the stromal compartment. In the linear mode, Fd binds ferredoxin-NADP-reductase and electrons are transferred to NADP+ and then to the Benson a...

متن کامل

Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence).

ce has become one of the most powerful methods for assessing photosynthetic performance in plant physiological experiments (Horton and Bowyer, 1990; Krause and Weis, 1991). This has resulted almost entirely from the development of methods to distinguish photochemical and nonphotochemical quenching of fluorescence. Moreover, it is now clear that the process of nonphotochemical quenching itself i...

متن کامل

Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves

In higher plants, the generation of proton gradient across the thylakoid membrane (ΔpH) through cyclic electron flow (CEF) has mainly two functions: (1) to generate ATP and balance the ATP/NADPH energy budget, and (2) to protect photosystems I and II against photoinhibition. The intensity of light under which plants are grown alters both CEF activity and the ATP/NADPH demand for primary metabol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1656 2-3  شماره 

صفحات  -

تاریخ انتشار 2004